The group G is isomorphic to the group labelled by [120, 34] in the Small Groups library. Ordinary character table of $G \cong S5$:

	1a	2a	3a	5a	2b	4a	6a
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1	-1
χ_3	6	-2	0	1	0	0	0
χ_4	4	0	1	-1	2	0	-1
χ_5	4	0	1	-1	-2	0	1
χ_6	5	1	-1	0	1	-1	1
χ_7	5	1	-1	0	-1	1	-1

Trivial source character table of $G \cong S5$ at p = 3:

invial source character table of $G = 55$ at $p = 5$.											
Normalisers N_i			N_1				N_2				
p-subgroups of G up to conjugacy in G			P_1				P_2				
Representatives $n_j \in N_i$			2a	4a	5a	1a	2a	2b	2c		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	6	0	2	2	1	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	6	0	2	-2	1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	6	0	-2	0	1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	9	3	1	-1	-1	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	9	-3	1	1	-1	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	-2	0	0	-1	1	-1	1	-1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	2	0	0	-1	1	1	-1	-1		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	-1	1	-1	1	1	-1	-1	1		

$$\begin{aligned} P_1 &= Group([()]) \cong 1 \\ P_2 &= Group([(3,4,5)]) \cong \mathbf{C3} \end{aligned}$$

$$\begin{array}{l} N_1 = SymmetricGroup([1..5]) \cong S5 \\ N_2 = Group([(1,2),(3,4,5),(4,5)]) \cong D12 \end{array}$$